- 84. A travel agency offers a group rate of \$600 per person for a weekend in Lake Tahoe if 20 people sign up. For each additional person who signs up, the price per person is reduced by \$10.
 - a. Write expressions for the size of the group and the price per person if x additional people sign up.
 - b. Write a polynomial for the travel agency's total income if x additional people sign up for the trip.
 - c. If 25 members of a ski club sign up for the weekend, what is the travel agency's income? If 30 members sign up?

В

Simplify each expression. Assume that all exponents denote natural numbers. See Examples 7 and 8.

85.
$$a^{2n}a^{n-3}$$

86.
$$b^n b^{2n+1}$$

88.
$$a^{2n-2}a^{n+3}$$

89.
$$(x^{2n}y)^3$$

90.
$$(xy^{3n})^2$$

91.
$$(x^{2n+1}y^{n-1})^3$$

87.
$$y^{2n+6}y^{4-n}$$
 88. $a^{2n-2}a^{n+3}$ 91. $(x^{2n+1}y^{n-1})^3$ 92. $(x^{n-2}y^{2n+1})^2$

93.
$$x^n(2x^n-1)$$

94.
$$3t^n(2t^n+3)$$

95.
$$a^{2n+1}(a^n + a)$$

$$96. \quad b^{2n+2}(b^{n-1}+b^n)$$

94.
$$3t^n(2t^n+3)$$

98.
$$(a^n - 3)(a^n + 2)$$

$$96. \quad b^{2n+2}(b^{n-1}+b^n)$$

97.
$$(1 + a^n)(2 - a^n)$$

100.
$$(a^{2n}-2b^n)(a^{3n}+b^{2n})$$

■ Verify each product.

99. $(2a^n - b^n)(a^n + 2b^n)$

101.
$$(x + a)(x - a) = x^2 - a^2$$

102.
$$(x-a)^2 = x^2 - 2ax + a^2$$

103.
$$(x + a)^2 = x^2 + 2ax + a^2$$

104.
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

105.
$$(x + a)(x^2 - ax + a^2) = x^3 + a^3$$

106.
$$(x-a)(x^2+ax+a^2)=x^3-a^3$$

FACTORING

It is sometimes useful to write a polynomial as a single term composed of two or more factors. This process is the reverse of multiplication and is called factoring. For example, observe that

$$3x^2 + 6x = 3x(x + 2)$$
.

Of course, we can also write

$$3x^2 + 6x = 6\left(\frac{1}{2}x^2 + x\right),$$