84. A travel agency offers a group rate of $600 per person for a weekend in Lake Tahoe if 20 people sign up. For each additional person who signs up, the price per person is reduced by $10.
 a. Write expressions for the size of the group and the price per person if \(x \) additional people sign up.
 b. Write a polynomial for the travel agency’s total income if \(x \) additional people sign up for the trip.
 c. If 25 members of a ski club sign up for the weekend, what is the travel agency’s income? If 30 members sign up?

B

- Simplify each expression. Assume that all exponents denote natural numbers. See Examples 7 and 8.

85. \(a^2b^3a^{-3} \) \hspace{1cm} 86. \(b^3b^{2n+1} \)
87. \(y^{2n+6}y^{4n} \) \hspace{1cm} 88. \(a^{2n-5}a^{n+3} \)
89. \((x^m)^3 \) \hspace{1cm} 90. \((xy)^{3n} \) \hspace{1cm} 91. \((x^{2n+1}y^{n-1})^3 \) \hspace{1cm} 92. \((x^{n-2}y^{2n+1})^2 \)
93. \(x^n(2x^n - 1) \) \hspace{1cm} 94. \(3t^n(2t^n + 3) \) \hspace{1cm} 95. \(a^{2n+1}(a^n + a) \) \hspace{1cm} 96. \(b^{2n+2}(b^{n-1}+ b^n) \)
97. \((1 + a^n)(2 - a^n) \) \hspace{1cm} 98. \((a^n - 3)(a^n + 2) \) \hspace{1cm} 99. \((2a^n - b^n)(a^n + 2b^n) \) \hspace{1cm} 100. \((a^{2n} - 2b^n)(a^{3n} + b^{2n}) \)

- Verify each product.

101. \((x + a)(x - a) = x^2 - a^2 \) \hspace{1cm} 102. \((x - a)^2 = x^2 - 2ax + a^2 \)
103. \((x + a)^2 = x^2 + 2ax + a^2 \) \hspace{1cm} 104. \((x + a)(x + b) = x^2 + (a + b)x + ab \)
105. \((x + a)(x^2 - ax + a^2) = x^3 + a^3 \) \hspace{1cm} 106. \((x - a)(x^2 + ax + a^2) = x^3 - a^3 \)

1.4 FACTORING

It is sometimes useful to write a polynomial as a single term composed of two or more factors. This process is the reverse of multiplication and is called factoring. For example, observe that

\[3x^2 + 6x = 3x(x + 2). \]

Of course, we can also write

\[3x^2 + 6x = 6\left(\frac{1}{2}x^2 + x\right), \]